(30a^3-18a^2-54a)/6a^2

Simple and best practice solution for (30a^3-18a^2-54a)/6a^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (30a^3-18a^2-54a)/6a^2 equation:


a in (-oo:+oo)

a^2*((30*a^3-(18*a^2)-(54*a))/6) = 0

a^2*((30*a^3-18*a^2-54*a)/6) = 0

(a^2*(30*a^3-18*a^2-54*a))/6 = 0

30*a^3-18*a^2-54*a = 0

6*a*(5*a^2-3*a-9) = 0

5*a^2-3*a-9 = 0

DELTA = (-3)^2-(-9*4*5)

DELTA = 189

DELTA > 0

a = (189^(1/2)+3)/(2*5) or a = (3-189^(1/2))/(2*5)

a = (3*21^(1/2)+3)/10 or a = (3-3*21^(1/2))/10

6*a*(a-((3-3*21^(1/2))/10))*(a-((3*21^(1/2)+3)/10)) = 0

(6*a*a^2*(a-((3-3*21^(1/2))/10))*(a-((3*21^(1/2)+3)/10)))/6 = 0

( 6*a )

6*a = 0 // : 6

a = 0

( a-((3*21^(1/2)+3)/10) )

a-((3*21^(1/2)+3)/10) = 0 // + (3*21^(1/2)+3)/10

a = (3*21^(1/2)+3)/10

( a-((3-3*21^(1/2))/10) )

a-((3-3*21^(1/2))/10) = 0 // + (3-3*21^(1/2))/10

a = (3-3*21^(1/2))/10

( a^2 )

1*a^2 = 0 // : 1

a^2 = 0

a = 0

a in { 0, (3*21^(1/2)+3)/10, (3-3*21^(1/2))/10, 0 }

See similar equations:

| d+2d-4d= | | 0.50x+0.75x=30 | | y=x^2+10+21 | | 3y^2-2yk-2k^2= | | 2b+2b-6b= | | X+11=-11-3x | | X+11x=-11-3x | | -8-(-44)= | | x-.30x+.08(x-.30x)+2= | | K^2-5k+8=2 | | p=2a+3c | | a^2=289 | | -17=x+19 | | K^2-5k+8=0 | | 16X-7=8X+7 | | 12x-4=11x | | K^2-5n+8=0 | | 16X-7=8X-7 | | 5n^2-70n+240= | | 8(2a+3b)-5b+a= | | y-2y=8 | | K^2-5+8=0 | | 4x+3-6(x+1)=6x+2 | | 3(0.72)+2y=-4 | | (6x+2)(5x-4)-30(X-1)=34x+106 | | 2(x+3)+3x-4=9 | | 43=17+13x | | 49n^2+21n-4=0 | | 43=17+13 | | 1.5x-2=-4x+2 | | -1=-2x+3 | | 27=12+3w |

Equations solver categories